Loading…
Machine learning models to predict and benchmark PICU length of stay with application to children with critical bronchiolitis
Objective To create models for prediction and benchmarking of pediatric intensive care unit (PICU) length of stay (LOS) for patients with critical bronchiolitis. Hypothesis We hypothesize that machine learning models applied to an administrative database will be able to accurately predict and benchm...
Saved in:
Published in: | Pediatric pulmonology 2023-06, Vol.58 (6), p.1777-1783 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective
To create models for prediction and benchmarking of pediatric intensive care unit (PICU) length of stay (LOS) for patients with critical bronchiolitis.
Hypothesis
We hypothesize that machine learning models applied to an administrative database will be able to accurately predict and benchmark the PICU LOS for critical bronchiolitis.
Design
Retrospective cohort study.
Patients
All patients less than 24‐month‐old admitted to the PICU with a diagnosis of bronchiolitis in the Pediatric Health Information Systems (PHIS) Database from 2016 to 2019.
Methodology
Two random forest models were developed to predict the PICU LOS. Model 1 was developed for benchmarking using all data available in the PHIS database for the hospitalization. Model 2 was developed for prediction using only data available on hospital admission. Models were evaluated using R2 values, mean standard error (MSE), and the observed to expected ratio (O/E), which is the total observed LOS divided by the total predicted LOS from the model.
Results
The models were trained on 13,838 patients admitted from 2016 to 2018 and validated on 5254 patients admitted in 2019. While Model 1 had superior R2 (0.51 vs. 0.10) and (MSE) (0.21 vs. 0.37) values compared to Model 2, the O/E ratios were similar (1.18 vs. 1.20). Institutional median O/E (LOS) ratio was 1.01 (IQR 0.90–1.09) with wide variability present between institutions.
Conclusions
Machine learning models developed using an administrative database were able to predict and benchmark the length of PICU stay for patients with critical bronchiolitis. |
---|---|
ISSN: | 8755-6863 1099-0496 |
DOI: | 10.1002/ppul.26401 |