Loading…

A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel

A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2006-04, Vol.37 (2), p.275-292
Main Authors: NGUYEN, T. C, WECKMAN, D. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power and axial displacement data were used in conjunction with a finite-element transient thermal model to predict the time-temperature history within the heat-affected zone (HAZ) of the weld. This was then used with a microstructure evolution model to predict the volume fraction of the subsequent microconstituents and the microhardness distribution across the weld interface of welds produced using three significantly different welding conditions: one with optimal conditions, one with a long burn-off time, and one with high axial pressure and rotational speed but short burn-off time. There was generally good agreement between the predicted and the measured time-temperature histories, volume fraction of the resultant microstructures, and microhardness distribution in the HAZ of AISI/SAE 1045 steel friction welds produced using these three significantly different welding conditions. [PUBLICATION ABSTRACT]
ISSN:1073-5615
1543-1916
DOI:10.1007/bf02693157