Loading…
A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel
A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power...
Saved in:
Published in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2006-04, Vol.37 (2), p.275-292 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-5f76b88bd95c42df8e94308ba573a265038a8b8074ec65914899643d29a966583 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-5f76b88bd95c42df8e94308ba573a265038a8b8074ec65914899643d29a966583 |
container_end_page | 292 |
container_issue | 2 |
container_start_page | 275 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 37 |
creator | NGUYEN, T. C WECKMAN, D. C |
description | A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power and axial displacement data were used in conjunction with a finite-element transient thermal model to predict the time-temperature history within the heat-affected zone (HAZ) of the weld. This was then used with a microstructure evolution model to predict the volume fraction of the subsequent microconstituents and the microhardness distribution across the weld interface of welds produced using three significantly different welding conditions: one with optimal conditions, one with a long burn-off time, and one with high axial pressure and rotational speed but short burn-off time. There was generally good agreement between the predicted and the measured time-temperature histories, volume fraction of the resultant microstructures, and microhardness distribution in the HAZ of AISI/SAE 1045 steel friction welds produced using these three significantly different welding conditions. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/bf02693157 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27980399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022894321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5f76b88bd95c42df8e94308ba573a265038a8b8074ec65914899643d29a966583</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsXP0EQ9CCsJpv_x1qsCgUvel6ySVZTsrs1yVb89m5tRfA0w8xvHm8eAOcY3WCExG3doJIrgpk4ABPMKCmwwvxw7JEgBeOYHYOTlFYIIa4UmQAzg_ndxVYHqDsLW29in3IcTB6ig27ThyH7voNtb12AfQOtj87kwka_cbCJ3vysP12wvnvbAuugfQeNjvU4T9m5cAqOGh2SO9vXKXhd3L_MH4vl88PTfLYsDJEsF6wRvJaytooZWtpGOkUJkrVmguiSM0SklrVEgjrDmcJUKsUpsaXSinMmyRRc7XTXsf8YXMpV65NxIejO9UOqSqEkIuPbU3DxD1z1Q-xGbxVWAmOChRih6x20TSRF11Tr6FsdvyqMqm3Y1d3iN-wRvtwr6mR0aKLujE9_F4ILTmlJvgEHx32o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197113177</pqid></control><display><type>article</type><title>A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel</title><source>Springer Nature</source><creator>NGUYEN, T. C ; WECKMAN, D. C</creator><creatorcontrib>NGUYEN, T. C ; WECKMAN, D. C</creatorcontrib><description>A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power and axial displacement data were used in conjunction with a finite-element transient thermal model to predict the time-temperature history within the heat-affected zone (HAZ) of the weld. This was then used with a microstructure evolution model to predict the volume fraction of the subsequent microconstituents and the microhardness distribution across the weld interface of welds produced using three significantly different welding conditions: one with optimal conditions, one with a long burn-off time, and one with high axial pressure and rotational speed but short burn-off time. There was generally good agreement between the predicted and the measured time-temperature histories, volume fraction of the resultant microstructures, and microhardness distribution in the HAZ of AISI/SAE 1045 steel friction welds produced using these three significantly different welding conditions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/bf02693157</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Carbon steel ; Exact sciences and technology ; Friction welding ; Joining, thermal cutting: metallurgical aspects ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Phase transitions ; Production of metals ; Temperature ; Welding</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2006-04, Vol.37 (2), p.275-292</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society and ASM International Apr 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5f76b88bd95c42df8e94308ba573a265038a8b8074ec65914899643d29a966583</citedby><cites>FETCH-LOGICAL-c385t-5f76b88bd95c42df8e94308ba573a265038a8b8074ec65914899643d29a966583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17676442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NGUYEN, T. C</creatorcontrib><creatorcontrib>WECKMAN, D. C</creatorcontrib><title>A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><description>A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power and axial displacement data were used in conjunction with a finite-element transient thermal model to predict the time-temperature history within the heat-affected zone (HAZ) of the weld. This was then used with a microstructure evolution model to predict the volume fraction of the subsequent microconstituents and the microhardness distribution across the weld interface of welds produced using three significantly different welding conditions: one with optimal conditions, one with a long burn-off time, and one with high axial pressure and rotational speed but short burn-off time. There was generally good agreement between the predicted and the measured time-temperature histories, volume fraction of the resultant microstructures, and microhardness distribution in the HAZ of AISI/SAE 1045 steel friction welds produced using these three significantly different welding conditions. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Carbon steel</subject><subject>Exact sciences and technology</subject><subject>Friction welding</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Phase transitions</subject><subject>Production of metals</subject><subject>Temperature</subject><subject>Welding</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LAzEQxYMoWKsXP0EQ9CCsJpv_x1qsCgUvel6ySVZTsrs1yVb89m5tRfA0w8xvHm8eAOcY3WCExG3doJIrgpk4ABPMKCmwwvxw7JEgBeOYHYOTlFYIIa4UmQAzg_ndxVYHqDsLW29in3IcTB6ig27ThyH7voNtb12AfQOtj87kwka_cbCJ3vysP12wvnvbAuugfQeNjvU4T9m5cAqOGh2SO9vXKXhd3L_MH4vl88PTfLYsDJEsF6wRvJaytooZWtpGOkUJkrVmguiSM0SklrVEgjrDmcJUKsUpsaXSinMmyRRc7XTXsf8YXMpV65NxIejO9UOqSqEkIuPbU3DxD1z1Q-xGbxVWAmOChRih6x20TSRF11Tr6FsdvyqMqm3Y1d3iN-wRvtwr6mR0aKLujE9_F4ILTmlJvgEHx32o</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>NGUYEN, T. C</creator><creator>WECKMAN, D. C</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TB</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060401</creationdate><title>A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel</title><author>NGUYEN, T. C ; WECKMAN, D. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5f76b88bd95c42df8e94308ba573a265038a8b8074ec65914899643d29a966583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Carbon steel</topic><topic>Exact sciences and technology</topic><topic>Friction welding</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Phase transitions</topic><topic>Production of metals</topic><topic>Temperature</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NGUYEN, T. C</creatorcontrib><creatorcontrib>WECKMAN, D. C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NGUYEN, T. C</au><au>WECKMAN, D. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>37</volume><issue>2</issue><spage>275</spage><epage>292</epage><pages>275-292</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power and axial displacement data were used in conjunction with a finite-element transient thermal model to predict the time-temperature history within the heat-affected zone (HAZ) of the weld. This was then used with a microstructure evolution model to predict the volume fraction of the subsequent microconstituents and the microhardness distribution across the weld interface of welds produced using three significantly different welding conditions: one with optimal conditions, one with a long burn-off time, and one with high axial pressure and rotational speed but short burn-off time. There was generally good agreement between the predicted and the measured time-temperature histories, volume fraction of the resultant microstructures, and microhardness distribution in the HAZ of AISI/SAE 1045 steel friction welds produced using these three significantly different welding conditions. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/bf02693157</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2006-04, Vol.37 (2), p.275-292 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_27980399 |
source | Springer Nature |
subjects | Applied sciences Carbon steel Exact sciences and technology Friction welding Joining, thermal cutting: metallurgical aspects Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Phase transitions Production of metals Temperature Welding |
title | A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermal%20and%20microstructure%20evolution%20model%20of%20direct-drive%20friction%20welding%20of%20plain%20carbon%20steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=NGUYEN,%20T.%20C&rft.date=2006-04-01&rft.volume=37&rft.issue=2&rft.spage=275&rft.epage=292&rft.pages=275-292&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/bf02693157&rft_dat=%3Cproquest_cross%3E1022894321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-5f76b88bd95c42df8e94308ba573a265038a8b8074ec65914899643d29a966583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=197113177&rft_id=info:pmid/&rfr_iscdi=true |