Loading…
Characterization of the undesirable global minima of the Godard cost function: case of noncircular symmetric signals
The deconvolution of a filtered version of a zero-mean normalized independent and identically distributed (i.i.d.) signal (s/sub n/)/sub n/spl isin/z/ having a strictly negative Kurtosis /spl gamma//sub 2/= E[|s/sub n/|/sup 4/]-2(E[|s/sub n/|/sup 2/])/sup 2/-|E[s/sub n//sup 2/|/sup 2/] is addressed....
Saved in:
Published in: | IEEE transactions on signal processing 2006-05, Vol.54 (5), p.1917-1922 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The deconvolution of a filtered version of a zero-mean normalized independent and identically distributed (i.i.d.) signal (s/sub n/)/sub n/spl isin/z/ having a strictly negative Kurtosis /spl gamma//sub 2/= E[|s/sub n/|/sup 4/]-2(E[|s/sub n/|/sup 2/])/sup 2/-|E[s/sub n//sup 2/|/sup 2/] is addressed. This correspondence focuses on the global minimizers of the Godard function. A well-known result states that these minimizers achieve deconvolution at least if the input signal shows the symmetry E[s/sup 2/]=0. When this constraint is relaxed, (s/sub n/)/sub n/spl isin/z/ is said to be noncircular symmetric: It is shown that the minimizers achieve deconvolution if and only if 2|E[s/sub n//sup 2/]|/sup 2/ |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2006.872584 |