Loading…

A novel UPLC-ESI-MS assay for fifteen portal estrogens and metabolites detection and application in hepatic fibrosis

Estrogens and their metabolites (EMs) are involved in chronic liver disease and gut microbiota regulates estrogen metabolism, whereas the role of enterogenous EMs in liver disease is still elusive. Because of the extremely low level of EMs in portal serum and the EMs contain multiple pairs of isomer...

Full description

Saved in:
Bibliographic Details
Published in:Analytical biochemistry 2023-06, Vol.671, p.115158-115158, Article 115158
Main Authors: Zhou, Jiahui, Qi, Xueping, Pan, Na, Li, Wanli, Fang, Haiming, Wang, Jiajia, Wang, Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estrogens and their metabolites (EMs) are involved in chronic liver disease and gut microbiota regulates estrogen metabolism, whereas the role of enterogenous EMs in liver disease is still elusive. Because of the extremely low level of EMs in portal serum and the EMs contain multiple pairs of isomers, an accurate determination of portal serum EMs is urgently needed. This study established a quantitative detection method for portal serum EMs and applied to non-alcoholic fatty liver disease (NAFLD) related hepatic fibrosis mice model. The serum was derived with a novel derivatization reagent 4-acetyl aminobenzene sulfonyl chloride, and a UPLC-ESI-MS system was used for quantification of 15 EMs in 120 min. Compared with normal group, the concentrations of E1, E2 in model group were significantly decreased by 4–8 times, all the C2 and C4 substitution products (2-OHE1, 2-OHE2, 2-MeOE1, 4-OHE1, 4-MeOE1, 4-OHE2, 4-MeOE2, 2-MeOE2) were significantly decreased by 2–22 times. However, the C16 and C17 substitution products (E3, 16-epiE3, 17-epiE3, 16-ketoE2) levels were increased by 3–5 times (P 
ISSN:0003-2697
1096-0309
DOI:10.1016/j.ab.2023.115158