Loading…
Analyzing split channel medium access control schemes
In this work, we analyze and evaluate the maximum achievable throughput of split-channel MAC schemes that are based on the RTS/CTS (ready-to-send/clear-to-send) dialogue and that rely on pure ALOHA or on p-persistent carrier sensing multiple access (CSMA) contention resolution techniques. Our result...
Saved in:
Published in: | IEEE transactions on wireless communications 2006-05, Vol.5 (5), p.967-971 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we analyze and evaluate the maximum achievable throughput of split-channel MAC schemes that are based on the RTS/CTS (ready-to-send/clear-to-send) dialogue and that rely on pure ALOHA or on p-persistent carrier sensing multiple access (CSMA) contention resolution techniques. Our results show that, when radio propagation delays are negligible and when the pure ALOHA mechanism is used, then for a network with relatively large number of nodes, the maximum achievable throughput of the split-channel MAC schemes is lower than that of the corresponding single-channel MAC schemes. When the split-channel MAC schemes employ the p-persistent CSMA mechanism, then they out-perform the corresponding single-channel schemes when the maximum end-to-end propagation delays are at least 25% of the transmission time of the control packets on the single shared channel. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2006.1633347 |