Loading…
Quasi-Free Electron States Responsible for Single-Molecule Conductance Enhancement in Stable Radical
Stable organic radicals, which possess half-filled orbitals in the vicinity of the Fermi energy, are promising candidates for electronic devices. In this Letter, using a combination of scanning-tunneling-microscopy-based break junction (STM-BJ) experiments and quantum transport theory, a stable fluo...
Saved in:
Published in: | The journal of physical chemistry letters 2023-05, Vol.14 (17), p.4004-4010 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stable organic radicals, which possess half-filled orbitals in the vicinity of the Fermi energy, are promising candidates for electronic devices. In this Letter, using a combination of scanning-tunneling-microscopy-based break junction (STM-BJ) experiments and quantum transport theory, a stable fluorene-based radical is investigated. We demonstrate that the transport properties of a series of fluorene derivatives can be tuned by controlling the degree of localization of certain orbitals. More specifically, radical 36-FR has a delocalized half-filled orbital resulting in Breit–Wigner resonances, leading to an unprecedented conductance enhancement of 2 orders of magnitude larger than the neutral nonradical counterpart (36-FOH). In other words, conversion from a closed-shell fluorene derivative to the free radical in 36-FR opens an electron transport path which massively enhances the conductance. This new understanding of the role of radicals in single-molecule junctions opens up a novel design strategy for single-molecule-based spintronic devices. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.3c00536 |