Loading…

Laser writing of spin defects in nanophotonic cavities

High-yield engineering and characterization of cavity–emitter coupling is an outstanding challenge in developing scalable quantum network nodes. Ex situ defect formation systems prevent real-time analysis, and previous in situ methods are limited to bulk substrates or require further processing to i...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2023-06, Vol.22 (6), p.696-702
Main Authors: Day, Aaron M., Dietz, Jonathan R., Sutula, Madison, Yeh, Matthew, Hu, Evelyn L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-yield engineering and characterization of cavity–emitter coupling is an outstanding challenge in developing scalable quantum network nodes. Ex situ defect formation systems prevent real-time analysis, and previous in situ methods are limited to bulk substrates or require further processing to improve the emitter properties 1 – 6 . Here we demonstrate the direct laser writing of cavity-integrated spin defects using a nanosecond pulsed above-bandgap laser. Photonic crystal cavities in 4H-silicon carbide serve as a nanoscope monitoring silicon-monovacancy defect formation within the approximately 200 nm 3 cavity-mode volume. We observe spin resonance, cavity-integrated photoluminescence and excited-state lifetimes consistent with conventional defect formation methods, without the need for post-irradiation thermal annealing. We further find an exponential reduction in excited-state lifetime at fluences approaching the cavity amorphization threshold and show the single-shot annealing of intrinsic background defects at silicon-monovacancy formation sites. This real-time in situ method of localized defect formation, paired with cavity-integrated defect spins, is necessary towards engineering cavity–emitter coupling for quantum networking. Using direct laser writing with a nanosecond pulsed laser operating at above-bandgap photon energies, we demonstrate the selective formation of spin defects in photonic crystal cavities in 4H-silicon carbide and their in situ characterization.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-023-01544-x