Loading…
Prediction of Nucleophilicity and Electrophilicity Based on a Machine‐Learning Approach
Nucleophilicity and electrophilicity dictate the reactivity of polar organic reactions. In the past decades, Mayr et al. established a quantitative scale for nucleophilicity (N) and electrophilicity (E), which proved to be a useful tool for the rationalization of chemical reactivity. In this study,...
Saved in:
Published in: | Chemphyschem 2023-07, Vol.24 (14), p.e202300162-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nucleophilicity and electrophilicity dictate the reactivity of polar organic reactions. In the past decades, Mayr et al. established a quantitative scale for nucleophilicity (N) and electrophilicity (E), which proved to be a useful tool for the rationalization of chemical reactivity. In this study, a holistic prediction model was developed through a machine‐learning approach. rSPOC, an ensemble molecular representation with structural, physicochemical and solvent features, was developed for this purpose. With 1115 nucleophiles, 285 electrophiles, and 22 solvents, the dataset is currently the largest one for reactivity prediction. The rSPOC model trained with the Extra Trees algorithm showed high accuracy in predicting Mayr's N and E parameters with R2 of 0.92 and 0.93, MAE of 1.45 and 1.45, respectively. Furthermore, the practical applications of the model, for instance, nucleophilicity prediction of NADH, NADPH and a series of enamines showed potential in predicting molecules with unknown reactivity within seconds. An online prediction platform (http://isyn.luoszgroup.com/) was constructed based on the current model, which is available free to the scientific community.
Precise prediction of Mayr's nucleophilicity N and electrophilicity E across different solvents is achieved by the rSPOC machine‐learning model, providing a fast and viable tool for rationalizing chemical reactivity. |
---|---|
ISSN: | 1439-4235 1439-7641 |
DOI: | 10.1002/cphc.202300162 |