Loading…

A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology

We present the design, fabrication, and testing of a push-pull differential resonant accelerometer with double-ended-tuning-fork (DETF) as the inertial force sensor. The accelerometer is fabricated with the silicon-on-insulator microelectromechanical systems (MEMS) technology that bridges surface mi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2005-12, Vol.5 (6), p.1214-1223
Main Authors: Su, S.X.P., Yang, H.S., Agogino, A.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the design, fabrication, and testing of a push-pull differential resonant accelerometer with double-ended-tuning-fork (DETF) as the inertial force sensor. The accelerometer is fabricated with the silicon-on-insulator microelectromechanical systems (MEMS) technology that bridges surface micromachining and bulk micromachining by integrating the 50-/spl mu/m-thick high-aspect ratio MEMS structure with the standard circuit foundry process. Two DETF resonators serve as the force sensor measuring the acceleration through a frequency shift caused by the inertial force acting as axial loading. Two-stage microleverage mechanisms with an amplification factor of 80 are designed for force amplification to increase the overall sensitivity to 160 Hz/g, which is confirmed by the experimental value of 158 Hz/g. Trans-resistance amplifiers are designed and integrated on the same chip for output signal amplification and processing. The 50-/spl mu/m thickness of the high-aspect ratio MEMS structure has no effect on the amplification factor of the mechanism but contributes to a greater capacitance force; therefore, the resonator can be actuated by a much lower ac voltage comparing to the 2-/spl mu/m-thick DETF resonators. The testing results agree with the designed sensitivity for static acceleration.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2005.857876