Loading…
NDE of defects in Superconducting wires using SQUID microscopy
Using a scanning Superconducting Quantum Interference Device (SQUID) microscope we have examined small samples of Nb-Ti wire with known defects and a sample with artificial defects. We orient the SQUID to measure the field parallel to the wire, which is near zero unless a defect is present. We also...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2005-06, Vol.15 (2), p.707-710 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a scanning Superconducting Quantum Interference Device (SQUID) microscope we have examined small samples of Nb-Ti wire with known defects and a sample with artificial defects. We orient the SQUID to measure the field parallel to the wire, which is near zero unless a defect is present. We also have examined known defects using a multi-channel scanning SQUID microscope. In addition, we have modified the nose cone of our SQUID microscope to enable fast NDE of long wires by positioning a thin tube immediately beneath the SQUID chip, while feeding the wire through the tube. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2005.850020 |