Loading…
The approximability of the weighted Hamiltonian path completion problem on a tree
Given a graph, the Hamiltonian path completion problem is to find an augmenting edge set such that the augmented graph has a Hamiltonian path. In this paper, we show that the Hamiltonian path completion problem will unlikely have any constant ratio approximation algorithm unless NP = P. This problem...
Saved in:
Published in: | Theoretical computer science 2005-09, Vol.341 (1), p.385-397 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given a graph, the Hamiltonian path completion problem is to find an augmenting edge set such that the augmented graph has a Hamiltonian path. In this paper, we show that the Hamiltonian path completion problem will unlikely have any constant ratio approximation algorithm unless NP = P. This problem remains hard to approximate even when the given subgraph is a tree. Moreover, if the edge weights are restricted to be either 1 or 2, the Hamiltonian path completion problem on a tree is still NP-hard. Then it is observed that this problem is strongly NP-hard, so it does not have any fully polynomial-time approximation scheme (FPTAS) unless NP=P. When the given tree is a
k-tree, we give an approximation algorithm with performance ratio 1.5. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2005.03.043 |