Loading…

Tween-80 enhanced biodegradation of naphthalene by Klebsiella quasipneumoniae

Accidental spillage of petroleum products and industrial activities result in various hydrocarbons in the environment. While the n-hydrocarbons are readily degraded, the polycyclic aromatic hydrocarbons (PAHs) are recalcitrant to natural degradation, toxic to aquatic life and are responsible for div...

Full description

Saved in:
Bibliographic Details
Published in:Antonie van Leeuwenhoek 2023-07, Vol.116 (7), p.697-709
Main Authors: Olukanni, Olumide D., Albert, Anthony A., Farinto, Micheal, Awotula, Ayodeji O., Osuntoki, Akinniyi A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accidental spillage of petroleum products and industrial activities result in various hydrocarbons in the environment. While the n-hydrocarbons are readily degraded, the polycyclic aromatic hydrocarbons (PAHs) are recalcitrant to natural degradation, toxic to aquatic life and are responsible for diverse health challenges in terrestrial animals; suggesting the need for faster and more eco-friendly ways of removing PAHs from the environment. In this study, the surfactant tween-80 was used to enhance a bacterium's intrinsic naphthalene biodegradation activity. Eight bacteria isolated from oil-contaminated soils were characterised using morphological and biochemical methods. The most effective strain was identified as Klebsiella quasipneumoniae using 16S rRNA gene analysis. High-Performance Liquid Chromatography (HPLC) analyses showed that the detectable concentration of naphthalene was decreased from 500 to 157.18 μg/mL (67.4%) after 7 d in the absence of tween-80, while 99.4% removal was achieved in 3 d in the presence of tween-80 at 60 μg/mL concentration. The peaks observed in the Fourier Transform Infra-Red Spectroscopy (FTIR) spectrum of control (naphthalene), which were absent in that of the metabolites, further established naphthalene degradation. Furthermore, Gas Chromatography-Mass Spectrometer (GCMS) revealed metabolites of single aromatic ring, such as 3,4-dihydroxybenzoic acid 4-hydroxylmethylphenol, which confirmed that the removal of naphthalene is by biodegradation. Tyrosinase induction and laccase activities suggested the involvement of these enzymes in naphthalene biodegradation by the bacterium. Conclusively, a strain of K. quasipneumoniae that can effectively remove naphthalene from contaminated environments has been isolated, and its biodegradation rate was doubled in the presence of non-ionic surfactant, tween-80.
ISSN:0003-6072
1572-9699
DOI:10.1007/s10482-023-01839-8