Loading…

Dimension/length profiles and trellis complexity of linear block codes

This semi-tutorial paper discusses the connections between the dimension/length profile (DLP) of a linear code, which is essentially the same as its "generalized Hamming weight hierarchy", and the complexity of its minimal trellis diagram. These connections are close and deep. DLP duality...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 1994-11, Vol.40 (6), p.1741-1752
Main Author: Forney, G.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This semi-tutorial paper discusses the connections between the dimension/length profile (DLP) of a linear code, which is essentially the same as its "generalized Hamming weight hierarchy", and the complexity of its minimal trellis diagram. These connections are close and deep. DLP duality is closely related to trellis duality. The DLP of a code gives tight bounds on its state and branch complexity profiles under any coordinate ordering; these bounds can often be met. A maximum distance separable (MDS) code is characterized by a certain extremal DLP, from which the main properties of MDS codes are easily derived. The simplicity and generality of these interrelationships are emphasized.< >
ISSN:0018-9448
1557-9654
DOI:10.1109/18.340452