Loading…
Multiple positive solutions for nonlinear dynamical systems on a measure chain
In this paper, we consider the following dynamical system on a measure chain: u 1 ΔΔ(t)+f 1(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], u 2 ΔΔ(t)+f 2(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], with the Sturm–Liouville boundary value conditions αu i(a)−βu i Δ(a)=0, γu i(σ(b))+δu i Δ(σ(b))=0 for i=1,2. Some results ar...
Saved in:
Published in: | Journal of computational and applied mathematics 2004-01, Vol.162 (2), p.421-430 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider the following dynamical system on a measure chain:
u
1
ΔΔ(t)+f
1(t,u
1(σ(t)),u
2(σ(t)))=0,
t∈[a,b],
u
2
ΔΔ(t)+f
2(t,u
1(σ(t)),u
2(σ(t)))=0,
t∈[a,b],
with the Sturm–Liouville boundary value conditions
αu
i(a)−βu
i
Δ(a)=0,
γu
i(σ(b))+δu
i
Δ(σ(b))=0
for
i=1,2.
Some results are obtained for the existence of three positive solutions of the above problem by using Leggett–Williams fixed point theorem. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2003.08.032 |