Loading…

Multiple positive solutions for nonlinear dynamical systems on a measure chain

In this paper, we consider the following dynamical system on a measure chain: u 1 ΔΔ(t)+f 1(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], u 2 ΔΔ(t)+f 2(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], with the Sturm–Liouville boundary value conditions αu i(a)−βu i Δ(a)=0, γu i(σ(b))+δu i Δ(σ(b))=0 for i=1,2. Some results ar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2004-01, Vol.162 (2), p.421-430
Main Authors: Li, Wan-Tong, Sun, Hong-Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-c2af70396c3f1db670cb4074ccbdc122da9c35af7ff7b510b7eb32a152212bb63
cites cdi_FETCH-LOGICAL-c399t-c2af70396c3f1db670cb4074ccbdc122da9c35af7ff7b510b7eb32a152212bb63
container_end_page 430
container_issue 2
container_start_page 421
container_title Journal of computational and applied mathematics
container_volume 162
creator Li, Wan-Tong
Sun, Hong-Rui
description In this paper, we consider the following dynamical system on a measure chain: u 1 ΔΔ(t)+f 1(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], u 2 ΔΔ(t)+f 2(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], with the Sturm–Liouville boundary value conditions αu i(a)−βu i Δ(a)=0, γu i(σ(b))+δu i Δ(σ(b))=0 for i=1,2. Some results are obtained for the existence of three positive solutions of the above problem by using Leggett–Williams fixed point theorem.
doi_str_mv 10.1016/j.cam.2003.08.032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28228792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042703007568</els_id><sourcerecordid>28228792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-c2af70396c3f1db670cb4074ccbdc122da9c35af7ff7b510b7eb32a152212bb63</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EEkvLD-DmC9ySju1snKgnVBWoVOgFzpYzmQivEnvrSSrtv8fVVuqN01y-90bvE-KTglqBaq8ONfql1gCmhq4Go9-InepsXylru7diB8baChpt34sPzAcAaHvV7MSvn9u8huNM8pg4rOGJJKd5W0OKLKeUZUxxDpF8luMp-iWgnyWfeKWFZYrSy4U8b5kk_vUhXop3k5-ZPr7cC_Hn2-3vmx_V_cP3u5uv9xWavl8r1H6yYPoWzaTGobWAQwO2QRxGVFqPvkezL8w02WGvYLA0GO3VXmulh6E1F-LLufeY0-NGvLolMNI8-0hpY6c7rct6XUB1BjEn5kyTO-aw-HxyCtyzOXdwxZx7Nuegc8VcyXx-Kfdc5k7ZRwz8Gtw3re1aW7jrM0dl6VOg7BgDRaQxZMLVjSn858s_-EmEwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28228792</pqid></control><display><type>article</type><title>Multiple positive solutions for nonlinear dynamical systems on a measure chain</title><source>ScienceDirect Journals</source><creator>Li, Wan-Tong ; Sun, Hong-Rui</creator><creatorcontrib>Li, Wan-Tong ; Sun, Hong-Rui</creatorcontrib><description>In this paper, we consider the following dynamical system on a measure chain: u 1 ΔΔ(t)+f 1(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], u 2 ΔΔ(t)+f 2(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], with the Sturm–Liouville boundary value conditions αu i(a)−βu i Δ(a)=0, γu i(σ(b))+δu i Δ(σ(b))=0 for i=1,2. Some results are obtained for the existence of three positive solutions of the above problem by using Leggett–Williams fixed point theorem.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2003.08.032</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cone ; Exact sciences and technology ; Finite differences and functional equations ; Fixed point ; Mathematical analysis ; Mathematics ; Measure chain ; Ordinary differential equations ; Positive solution ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2004-01, Vol.162 (2), p.421-430</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-c2af70396c3f1db670cb4074ccbdc122da9c35af7ff7b510b7eb32a152212bb63</citedby><cites>FETCH-LOGICAL-c399t-c2af70396c3f1db670cb4074ccbdc122da9c35af7ff7b510b7eb32a152212bb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15467867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wan-Tong</creatorcontrib><creatorcontrib>Sun, Hong-Rui</creatorcontrib><title>Multiple positive solutions for nonlinear dynamical systems on a measure chain</title><title>Journal of computational and applied mathematics</title><description>In this paper, we consider the following dynamical system on a measure chain: u 1 ΔΔ(t)+f 1(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], u 2 ΔΔ(t)+f 2(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], with the Sturm–Liouville boundary value conditions αu i(a)−βu i Δ(a)=0, γu i(σ(b))+δu i Δ(σ(b))=0 for i=1,2. Some results are obtained for the existence of three positive solutions of the above problem by using Leggett–Williams fixed point theorem.</description><subject>Cone</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Fixed point</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Measure chain</subject><subject>Ordinary differential equations</subject><subject>Positive solution</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS0EEkvLD-DmC9ySju1snKgnVBWoVOgFzpYzmQivEnvrSSrtv8fVVuqN01y-90bvE-KTglqBaq8ONfql1gCmhq4Go9-InepsXylru7diB8baChpt34sPzAcAaHvV7MSvn9u8huNM8pg4rOGJJKd5W0OKLKeUZUxxDpF8luMp-iWgnyWfeKWFZYrSy4U8b5kk_vUhXop3k5-ZPr7cC_Hn2-3vmx_V_cP3u5uv9xWavl8r1H6yYPoWzaTGobWAQwO2QRxGVFqPvkezL8w02WGvYLA0GO3VXmulh6E1F-LLufeY0-NGvLolMNI8-0hpY6c7rct6XUB1BjEn5kyTO-aw-HxyCtyzOXdwxZx7Nuegc8VcyXx-Kfdc5k7ZRwz8Gtw3re1aW7jrM0dl6VOg7BgDRaQxZMLVjSn858s_-EmEwQ</recordid><startdate>20040115</startdate><enddate>20040115</enddate><creator>Li, Wan-Tong</creator><creator>Sun, Hong-Rui</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040115</creationdate><title>Multiple positive solutions for nonlinear dynamical systems on a measure chain</title><author>Li, Wan-Tong ; Sun, Hong-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-c2af70396c3f1db670cb4074ccbdc122da9c35af7ff7b510b7eb32a152212bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cone</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Fixed point</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Measure chain</topic><topic>Ordinary differential equations</topic><topic>Positive solution</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wan-Tong</creatorcontrib><creatorcontrib>Sun, Hong-Rui</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wan-Tong</au><au>Sun, Hong-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple positive solutions for nonlinear dynamical systems on a measure chain</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2004-01-15</date><risdate>2004</risdate><volume>162</volume><issue>2</issue><spage>421</spage><epage>430</epage><pages>421-430</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, we consider the following dynamical system on a measure chain: u 1 ΔΔ(t)+f 1(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], u 2 ΔΔ(t)+f 2(t,u 1(σ(t)),u 2(σ(t)))=0, t∈[a,b], with the Sturm–Liouville boundary value conditions αu i(a)−βu i Δ(a)=0, γu i(σ(b))+δu i Δ(σ(b))=0 for i=1,2. Some results are obtained for the existence of three positive solutions of the above problem by using Leggett–Williams fixed point theorem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2003.08.032</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2004-01, Vol.162 (2), p.421-430
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28228792
source ScienceDirect Journals
subjects Cone
Exact sciences and technology
Finite differences and functional equations
Fixed point
Mathematical analysis
Mathematics
Measure chain
Ordinary differential equations
Positive solution
Sciences and techniques of general use
title Multiple positive solutions for nonlinear dynamical systems on a measure chain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20positive%20solutions%20for%20nonlinear%20dynamical%20systems%20on%20a%20measure%20chain&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Li,%20Wan-Tong&rft.date=2004-01-15&rft.volume=162&rft.issue=2&rft.spage=421&rft.epage=430&rft.pages=421-430&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2003.08.032&rft_dat=%3Cproquest_cross%3E28228792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-c2af70396c3f1db670cb4074ccbdc122da9c35af7ff7b510b7eb32a152212bb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28228792&rft_id=info:pmid/&rfr_iscdi=true