Loading…
Designing syntactic pattern classifiers using vector quantization and parametric string editing
We consider a fundamental inference problem in syntactic pattern recognition (PR). We assume that the system has a dictionary which is a collection of all the ideal representations of the objects in question. To recognize a noisy sample, the system compares it with every element in the dictionary ba...
Saved in:
Published in: | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics man and cybernetics. Part B, Cybernetics, 1999-12, Vol.29 (6), p.881-888 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a fundamental inference problem in syntactic pattern recognition (PR). We assume that the system has a dictionary which is a collection of all the ideal representations of the objects in question. To recognize a noisy sample, the system compares it with every element in the dictionary based on a nearest-neighbor philosophy, using three standard edit operations: substitution, insertion, and deletion, and the associated primitive elementary edit distances d(.,.). In this paper, we consider the assignment of the inter-symbol distances using the parametric distances. We show how the classifier can be trained to get the optimal parametric distance using vector quantization in the meta-space. In all our experiments, the training was typically achieved in a very few iterations. The subsequent classification accuracy we obtained using this single-parameter scheme was 96.13%. The power of the scheme is evident if we compare it to 96.67%, which is the accuracy of the scheme which uses the complete array of inter-symbol distances derived from a knowledge of all the confusion probabilities. |
---|---|
ISSN: | 1083-4419 1941-0492 |
DOI: | 10.1109/3477.809040 |