Loading…

Cellular composition modifies the biological properties and stability of platelet rich plasma membranes for tissue engineering

Scaffolds should provide structural support for tissue regeneration, allowing their gradual biodegradation and interacting with cells and bioactive molecules to promote remodeling. Thus, the scaffold's intrinsic properties affect cellular processes involved in tissue regeneration, including mig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A 2023-11, Vol.111 (11), p.1710-1721
Main Authors: Anitua, Eduardo, Zalduendo, Mar, Troya, María, Tierno, Roberto, Alkhraisat, Mohammad H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scaffolds should provide structural support for tissue regeneration, allowing their gradual biodegradation and interacting with cells and bioactive molecules to promote remodeling. Thus, the scaffold's intrinsic properties affect cellular processes involved in tissue regeneration, including migration, proliferation, differentiation, and protein synthesis. In this sense, due to its biological effect and clinical potential, Platelet Rich Plasma (PRP) fibrin could be considered a successful scaffold. Given the high variability in commercial PRPs formulations, this research focused on assessing the influence of cellular composition on fibrin membrane stability and remodeling cell activity. The stability and biological effect were evaluated at different time points via D-dimer, type I collagen and elastase quantification in culture media conditioned by Plasma Rich in Growth Factors - Fraction 1 (PRGF-F1), Plasma Rich in Growth Factors - Whole Plasma (PRGF-WP) and Leukocyte-rich Platelet Rich Plasma (L-PRP) membranes, and by gingival fibroblast cells seeded on them, respectively. Ultrastructure of PRP membranes was also evaluated. Histological analyses were performed after 5 and 18 days. Additionally, the effect of fibrin membranes on cell proliferation was determined. According to the results, L-PRP fibrin membranes degradation was complete at the end of the study, while PRGF membranes remained practically unchanged. Considering fibroblast behavior, PRGF membranes, in contrast to L-PRP ones, promoted extracellular matrix biosynthesis at the same time as fibrinolysis and enhanced cell proliferation. In conclusion, leukocytes in PRP fibrin membranes drastically reduce scaffold stability and induce behavioral changes in fibroblasts by reducing their proliferation rate and remodeling ability.
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.37579