Loading…
Optimization of pig manure-derived biochar for ammonium and phosphate simultaneous recovery from livestock wastewater
Livestock wastewater has led to serious eco-environmental issues. To effectively treat livestock wastewater and realize the resource utilization of livestock solid waste, manure waste has been widely used to prepare biochar for the recovery of nitrogen and phosphorus. However, fresh biochar has a po...
Saved in:
Published in: | Environmental science and pollution research international 2023-07, Vol.30 (34), p.82532-82546 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Livestock wastewater has led to serious eco-environmental issues. To effectively treat livestock wastewater and realize the resource utilization of livestock solid waste, manure waste has been widely used to prepare biochar for the recovery of nitrogen and phosphorus. However, fresh biochar has a poor ability to adsorb phosphate due to its negative charge. To overcome the defect, the proportion of biochar samples prepared at 400 °C and 700 °C was optimized under a mass ratio of 2:3 to obtain mixed biochar PM 4-7, achieving the purpose of enhanced ammonium and phosphate recovery in livestock wastewater simultaneously without any modification. The effects of pyrolysis temperature, dosage, and pH were studied, different adsorption models were used to explore the adsorption mechanism, and the effect of biochar loaded with nutrient elements on seed was verified through a seed germination experiment. It was revealed that the maximum removal rates of phosphate and ammonium were 33.88 % and 41.50 %, respectively, endorsing that mixed biochar PM 4-7 can recover nutrients from livestock wastewater, and could be used as a slow-release fertilizer to promote seed germination and growth. This method provides a new potential way for the efficient resource utilization of pig manure and the recovery of nutrients from breeding wastewater.
Graphical abstract |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-28092-w |