Loading…
Transient Metal Centers at the Covalent Heterointerface Favor Photocatalytic Hydrogen Evolution
Semiconductor heterostructures effectively promote the transfer and separation of interfacial photoinduced charges for the photocatalytic process. Herein, we constructed a direct Z-scheme SnSe2/CdS heterojunction photocatalyst. N-type SnSe2 semiconductors are suitable candidate materials for oxidati...
Saved in:
Published in: | ACS applied materials & interfaces 2023-07, Vol.15 (26), p.31364-31374 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Semiconductor heterostructures effectively promote the transfer and separation of interfacial photoinduced charges for the photocatalytic process. Herein, we constructed a direct Z-scheme SnSe2/CdS heterojunction photocatalyst. N-type SnSe2 semiconductors are suitable candidate materials for oxidation half-reactions in Z-scheme heterojunctions. The intimate atomic-level interfacial contact through Cd–Se bonds provides a better interfacial charge transport channel for the photoinduced charges. Moreover, the transient Sn4+/Sn0 centers caused by the photoredox process boost the interfacial charge transport/separation at the interface. Besides, the presence of S vacancies acting as electron enrichment centers further enhances the redox ability for hydrogen production. Therefore, the SnSe2/CdS heterostructure showed a superior visible-light photocatalytic H2-production activity of 13.6 mmol·g–1·h–1 using ascorbic acid as a sacrificial agent, which is 9.7 times higher than that of pristine CdS. The apparent quantum yield reaches 10.5% at λ = 420 nm. This work provides a useful way to improve charge transfer in the Z-scheme heterojunction photocatalyst for hydrogen production. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c02662 |