Loading…

Unsupervised clustering for nontextual web document classification

While the breath of vocabulary used in long documents may mislead the traditional keyword-based retrieval systems, the demands for techniques in nontextual Web classification and retrieval from a large document collection are mounting. Only a few prototype systems have attempted to classify hypertex...

Full description

Saved in:
Bibliographic Details
Published in:Decision Support Systems 2004-06, Vol.37 (3), p.377-396
Main Authors: Chan, Samuel W.K., Chong, Mickey W.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While the breath of vocabulary used in long documents may mislead the traditional keyword-based retrieval systems, the demands for techniques in nontextual Web classification and retrieval from a large document collection are mounting. Only a few prototype systems have attempted to classify hypertext on the basis of nontextual elements in order to locate unfamiliar documents. As a result, a large portion of Web documents having pictorial information in nature is far beyond the reach of most current search engines. In this research, we devise a novel quantitative model of nontextual World Wide Web (WWW) classification based on image information. An intelligent content-sensitive, attribute-rich image classifier is presented. An image similarity measure is used to deduce the likelihood among images. Different image feature vectors have been constructed and evaluated. Evaluation shows images judged to be similar by human form interesting clusters in our unsupervised learning. Comparison with other clustering technique, such as Hierarchical Agglomerative Clustering (HAC), demonstrates that our approach is found useful in content-based image information retrieval.
ISSN:0167-9236
1873-5797
DOI:10.1016/S0167-9236(03)00035-6