Loading…

Affine parameter-dependent Lyapunov functions and real parametric uncertainty

This paper presents new tests to analyze the robust stability and/or performance of linear systems with uncertain real parameters. These tests are extensions of the notions of quadratic stability and performance where the fixed quadratic Lyapunov function is replaced by a Lyapunov function with affi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1996-03, Vol.41 (3), p.436-442
Main Authors: Gahinet, P., Apkarian, P., Chilali, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents new tests to analyze the robust stability and/or performance of linear systems with uncertain real parameters. These tests are extensions of the notions of quadratic stability and performance where the fixed quadratic Lyapunov function is replaced by a Lyapunov function with affine dependence on the uncertain parameters. Admittedly with some conservatism, the construction of such parameter-dependent Lyapunov functions can be reduced to a linear matrix inequality (LMI) problem and hence is numerically tractable. These LMI-based tests are applicable to constant or time-varying uncertain parameters and are less conservative than quadratic stability in the case of slow parametric variations. They also avoid the frequency sweep needed in real-/spl mu/ analysis, and numerical experiments indicate that they often compare favorably with /spl mu/ analysis for time-invariant parameter uncertainty.
ISSN:0018-9286
1558-2523
DOI:10.1109/9.486646