Loading…
Affine parameter-dependent Lyapunov functions and real parametric uncertainty
This paper presents new tests to analyze the robust stability and/or performance of linear systems with uncertain real parameters. These tests are extensions of the notions of quadratic stability and performance where the fixed quadratic Lyapunov function is replaced by a Lyapunov function with affi...
Saved in:
Published in: | IEEE transactions on automatic control 1996-03, Vol.41 (3), p.436-442 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents new tests to analyze the robust stability and/or performance of linear systems with uncertain real parameters. These tests are extensions of the notions of quadratic stability and performance where the fixed quadratic Lyapunov function is replaced by a Lyapunov function with affine dependence on the uncertain parameters. Admittedly with some conservatism, the construction of such parameter-dependent Lyapunov functions can be reduced to a linear matrix inequality (LMI) problem and hence is numerically tractable. These LMI-based tests are applicable to constant or time-varying uncertain parameters and are less conservative than quadratic stability in the case of slow parametric variations. They also avoid the frequency sweep needed in real-/spl mu/ analysis, and numerical experiments indicate that they often compare favorably with /spl mu/ analysis for time-invariant parameter uncertainty. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.486646 |