Loading…

Genetics-based machine learning for the assessment of certain neuromuscular disorders

Clinical electromyography (EMG) provides useful information for the diagnosis of neuromuscular disorders. The utility of artificial neural networks (ANN's) in classifying EMG data trained with backpropagation or Rohonen's self-organizing feature maps algorithm has recently been demonstrate...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural networks 1996-03, Vol.7 (2), p.427-439
Main Authors: Pattichis, C.S., Schizas, C.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clinical electromyography (EMG) provides useful information for the diagnosis of neuromuscular disorders. The utility of artificial neural networks (ANN's) in classifying EMG data trained with backpropagation or Rohonen's self-organizing feature maps algorithm has recently been demonstrated. The objective of this study is to investigate how genetics-based machine learning (GBML) can be applied for diagnosing certain neuromuscular disorders based on EMG data. The effect of GBML control parameters on diagnostic performance is also examined. A hybrid diagnostic system is introduced that combines both neural network and GBML models. Such a hybrid system provides the end-user with a robust and reliable system, as its diagnostic performance relies on more than one learning principle. GBML models demonstrated similar performance to neural-network models, but with less computation. The diagnostic performance of neural network and GBML models is enhanced by the hybrid system.
ISSN:1045-9227
1941-0093
DOI:10.1109/72.485678