Loading…
A machine learning approach to quantify individual gait responses to ankle exoskeletons
Predicting an individual’s response to an exoskeleton and understanding what data are needed to characterize responses remains challenging. Specifically, we lack a theoretical framework capable of quantifying heterogeneous responses to exoskeleton interventions. We leverage a neural network-based di...
Saved in:
Published in: | Journal of biomechanics 2023-08, Vol.157, p.111695-111695, Article 111695 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predicting an individual’s response to an exoskeleton and understanding what data are needed to characterize responses remains challenging. Specifically, we lack a theoretical framework capable of quantifying heterogeneous responses to exoskeleton interventions. We leverage a neural network-based discrepancy modeling framework to quantify complex changes in gait in response to passive ankle exoskeletons in nondisabled adults. Discrepancy modeling aims to resolve dynamical inconsistencies between model predictions and real-world measurements. Neural networks identified models of (i) Nominal gait, (ii) Exoskeleton (Exo) gait, and (iii) the Discrepancy (i.e., response) between them. If an Augmented (Nominal+Discrepancy) model captured exoskeleton responses, its predictions should account for comparable amounts of variance in Exo gait data as the Exo model. Discrepancy modeling successfully quantified individuals’ exoskeleton responses without requiring knowledge about physiological structure or motor control: a model of Nominal gait augmented with a Discrepancy model of response accounted for significantly more variance in Exo gait (median R2 for kinematics (0.928−0.963) and electromyography (0.665−0.788), (p |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2023.111695 |