Loading…
Selective Electroporation of Tumor Cells Under AC Radiofrequency Stimulation - A Numerical Study
Self-consistent evaluations of membrane electroporation along with local heating in single spherical cells arising from external AC radiofrequency electrical stimulation have been carried out. The present numerical study seeks to determine whether healthy and malignant cells exhibit separate electro...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2024-01, Vol.PP (1), p.1-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self-consistent evaluations of membrane electroporation along with local heating in single spherical cells arising from external AC radiofrequency electrical stimulation have been carried out. The present numerical study seeks to determine whether healthy and malignant cells exhibit separate electroporative responses with regards to operating frequency. It is shown that cells of Burkitt's lymphoma would respond to frequencies >4.5 MHz, while normal B-cells would have negligible porative effects in that higher frequency range. Similarly, a frequency separation between the response of healthy T-cells and malignant species is predicted with a threshold of about 4 MHz for cancer cells. The present simulation technique is general and so would be able to ascertain the beneficial frequency range for different cell types. The demonstration of higher frequencies to induce poration in malignant cells, while having minimal affecting healthy ones, suggests the possibility of selective electrical targeting for tumor treatments and protocols. It also opens the doorway for tabulating selectivity enhancement regimes as a guide for parameter selection towards more effective treatments while minimizing deleterious effects on healthy cells and tissues. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2023.3293278 |