Loading…
Physiological responses to 9 hours of heat exposure in young and older adults. Part I: Body temperature and hemodynamic regulation
Aging is associated with an elevated risk of heat-related mortality and morbidity, attributed, in part, to declines in thermoregulation. However, comparisons between young and older adults have been limited to brief exposures (1-4 h), which may not adequately reflect the duration or severity of the...
Saved in:
Published in: | Journal of applied physiology (1985) 2023-09, Vol.135 (3), p.673-687 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aging is associated with an elevated risk of heat-related mortality and morbidity, attributed, in part, to declines in thermoregulation. However, comparisons between young and older adults have been limited to brief exposures (1-4 h), which may not adequately reflect the duration or severity of the heat stress experienced during heat waves. We therefore evaluated physiological responses in 20 young (19-31 yr; 10 females) and 39 older (61-78 yr; 11 females) adults during 9 h of rest at 40°C and 9% relative humidity. Whole body heat exchange and storage were measured with direct calorimetry during the first 3 h and final 3 h. Core temperature (rectal) was monitored continuously. The older adults stored 88 kJ [95% confidence interval (CI): 29, 147] more heat over the first 3 h of exposure (
= 0.006). Although no between-group differences were observed after 3 h [young: 37.6°C (SD 0.2°C) vs. older: 37.7°C (0.3°C);
= 0.216], core temperature was elevated by 0.3°C [0.1, 0.4] (adjusted for baseline) in the older group at
[37.6°C (0.2°C) vs. 37.9°C (0.2°C);
< 0.001] and by 0.2°C [0.0, 0.3] at
[37.7°C (0.3°C) vs. 37.8°C (0.3°C)], although the latter comparison was not significant after multiplicity correction (
= 0.061). Our findings indicate that older adults sustain greater increases in heat storage and core temperature during daylong exposure to hot dry conditions compared with their younger counterparts. This study represents an important step in the use of ecologically relevant, prolonged exposures for translational research aimed at quantifying the physiological and health impacts of hot weather and heat waves on heat-vulnerable populations.
We found greater increases in body heat storage and core temperature in older adults than in their younger counterparts during 9 h of resting exposure to hot dry conditions. Furthermore, the age-related increase in core temperature was exacerbated in older adults with common heat-vulnerability-linked health conditions (type 2 diabetes and hypertension). Impairments in thermoregulatory function likely contribute to the increased risk of heat-related illness and injury seen in older adults during hot weather and heat waves. |
---|---|
ISSN: | 8750-7587 1522-1601 |
DOI: | 10.1152/japplphysiol.00227.2023 |