Loading…

Modular bipolar analysis: Part II-Application

This paper describes the application of a generalized modular model that is used to analyze realistic bipolar junction devices and integrated circuits from physical geometries and impurity profiles. A n-p-n transistor is partitioned into simple one-dimensional modules which enables a closed recursiv...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 1978-03, Vol.25 (3), p.306-313
Main Authors: Dunkley, J.L., Kang, S.D., Nygaard, P.A.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c238t-50428f40b233c22ae42911eb9d19930c7a6a9bc6439de065ff158604c2ddff033
cites
container_end_page 313
container_issue 3
container_start_page 306
container_title IEEE transactions on electron devices
container_volume 25
creator Dunkley, J.L.
Kang, S.D.
Nygaard, P.A.
description This paper describes the application of a generalized modular model that is used to analyze realistic bipolar junction devices and integrated circuits from physical geometries and impurity profiles. A n-p-n transistor is partitioned into simple one-dimensional modules which enables a closed recursive equation to be used in solving for their electrical parameters. (See companion paper [13].) The individual module solutions are then superimposed upon the physical structure of the transistor to obtain its intrinsic electrical parameters. The advantages of using the recursive equation in performing ac, dc, and transient circuit analyses are simplicity and flexibility without a significant loss in accuracy. The application used to demonstrate this is the optimization and characterization of an Integrated Injection Logic (I 2 L) gate delay measured by an 11-gate ring oscillator. The agreement between the predicted and measured propagation delay is within 10 percent.
doi_str_mv 10.1109/T-ED.1978.19075
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28373467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1479469</ieee_id><sourcerecordid>28373467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-50428f40b233c22ae42911eb9d19930c7a6a9bc6439de065ff158604c2ddff033</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqUwM7B0YjN9_rbZqrZApSIYymw5ji0ZpU2w06H_npQisbK8qyede4eD0C2BB0LATDd4uXggRunhgBJnaESEUNhILs_RCIBobJhml-iqlM_hlZzTEcKvbb1vXJ5UqWuP6XauOZRUHifvLveT1QrPuq5J3vWp3V2ji-iaEm5-c4w-npab-Qtevz2v5rM19pTpHgvgVEcOFWXMU-oCp4aQUJmaGMPAKyedqbzkzNQBpIiRCC2Be1rXMQJjY3R_2u1y-7UPpbfbVHxoGrcL7b5Yqo1QQsM_QKYYl2oApyfQ57aUHKLtctq6fLAE7NGf3djlwh792R9_Q-Pu1EghhD-aK8OlYd-Wrmns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28373467</pqid></control><display><type>article</type><title>Modular bipolar analysis: Part II-Application</title><source>IEEE Xplore (Online service)</source><creator>Dunkley, J.L. ; Kang, S.D. ; Nygaard, P.A.</creator><creatorcontrib>Dunkley, J.L. ; Kang, S.D. ; Nygaard, P.A.</creatorcontrib><description>This paper describes the application of a generalized modular model that is used to analyze realistic bipolar junction devices and integrated circuits from physical geometries and impurity profiles. A n-p-n transistor is partitioned into simple one-dimensional modules which enables a closed recursive equation to be used in solving for their electrical parameters. (See companion paper [13].) The individual module solutions are then superimposed upon the physical structure of the transistor to obtain its intrinsic electrical parameters. The advantages of using the recursive equation in performing ac, dc, and transient circuit analyses are simplicity and flexibility without a significant loss in accuracy. The application used to demonstrate this is the optimization and characterization of an Integrated Injection Logic (I 2 L) gate delay measured by an 11-gate ring oscillator. The agreement between the predicted and measured propagation delay is within 10 percent.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/T-ED.1978.19075</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on electron devices, 1978-03, Vol.25 (3), p.306-313</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-50428f40b233c22ae42911eb9d19930c7a6a9bc6439de065ff158604c2ddff033</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1479469$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dunkley, J.L.</creatorcontrib><creatorcontrib>Kang, S.D.</creatorcontrib><creatorcontrib>Nygaard, P.A.</creatorcontrib><title>Modular bipolar analysis: Part II-Application</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper describes the application of a generalized modular model that is used to analyze realistic bipolar junction devices and integrated circuits from physical geometries and impurity profiles. A n-p-n transistor is partitioned into simple one-dimensional modules which enables a closed recursive equation to be used in solving for their electrical parameters. (See companion paper [13].) The individual module solutions are then superimposed upon the physical structure of the transistor to obtain its intrinsic electrical parameters. The advantages of using the recursive equation in performing ac, dc, and transient circuit analyses are simplicity and flexibility without a significant loss in accuracy. The application used to demonstrate this is the optimization and characterization of an Integrated Injection Logic (I 2 L) gate delay measured by an 11-gate ring oscillator. The agreement between the predicted and measured propagation delay is within 10 percent.</description><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqUwM7B0YjN9_rbZqrZApSIYymw5ji0ZpU2w06H_npQisbK8qyede4eD0C2BB0LATDd4uXggRunhgBJnaESEUNhILs_RCIBobJhml-iqlM_hlZzTEcKvbb1vXJ5UqWuP6XauOZRUHifvLveT1QrPuq5J3vWp3V2ji-iaEm5-c4w-npab-Qtevz2v5rM19pTpHgvgVEcOFWXMU-oCp4aQUJmaGMPAKyedqbzkzNQBpIiRCC2Be1rXMQJjY3R_2u1y-7UPpbfbVHxoGrcL7b5Yqo1QQsM_QKYYl2oApyfQ57aUHKLtctq6fLAE7NGf3djlwh792R9_Q-Pu1EghhD-aK8OlYd-Wrmns</recordid><startdate>19780301</startdate><enddate>19780301</enddate><creator>Dunkley, J.L.</creator><creator>Kang, S.D.</creator><creator>Nygaard, P.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>19780301</creationdate><title>Modular bipolar analysis: Part II-Application</title><author>Dunkley, J.L. ; Kang, S.D. ; Nygaard, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-50428f40b233c22ae42911eb9d19930c7a6a9bc6439de065ff158604c2ddff033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunkley, J.L.</creatorcontrib><creatorcontrib>Kang, S.D.</creatorcontrib><creatorcontrib>Nygaard, P.A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunkley, J.L.</au><au>Kang, S.D.</au><au>Nygaard, P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular bipolar analysis: Part II-Application</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1978-03-01</date><risdate>1978</risdate><volume>25</volume><issue>3</issue><spage>306</spage><epage>313</epage><pages>306-313</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper describes the application of a generalized modular model that is used to analyze realistic bipolar junction devices and integrated circuits from physical geometries and impurity profiles. A n-p-n transistor is partitioned into simple one-dimensional modules which enables a closed recursive equation to be used in solving for their electrical parameters. (See companion paper [13].) The individual module solutions are then superimposed upon the physical structure of the transistor to obtain its intrinsic electrical parameters. The advantages of using the recursive equation in performing ac, dc, and transient circuit analyses are simplicity and flexibility without a significant loss in accuracy. The application used to demonstrate this is the optimization and characterization of an Integrated Injection Logic (I 2 L) gate delay measured by an 11-gate ring oscillator. The agreement between the predicted and measured propagation delay is within 10 percent.</abstract><pub>IEEE</pub><doi>10.1109/T-ED.1978.19075</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1978-03, Vol.25 (3), p.306-313
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_28373467
source IEEE Xplore (Online service)
title Modular bipolar analysis: Part II-Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20bipolar%20analysis:%20Part%20II-Application&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Dunkley,%20J.L.&rft.date=1978-03-01&rft.volume=25&rft.issue=3&rft.spage=306&rft.epage=313&rft.pages=306-313&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/T-ED.1978.19075&rft_dat=%3Cproquest_ieee_%3E28373467%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-50428f40b233c22ae42911eb9d19930c7a6a9bc6439de065ff158604c2ddff033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28373467&rft_id=info:pmid/&rft_ieee_id=1479469&rfr_iscdi=true