Loading…
A facile strategy for constructing lightweight, fire safety and compression resistance poly(vinylalcohol) aerogels with highly-efficient expansible graphene oxide/layered double hydroxides hybrid synergistic flame retardant
[Display omitted] Poly(vinyl alcohol) (PVA) aerogels with excellent environmentally friendly properties have been considered to replace undegradable polymer foams. However, due to highly flammable, hydrophilic, and worse compression resistance performance, PVA aerogels have always been excluded from...
Saved in:
Published in: | Journal of colloid and interface science 2023-11, Vol.650 (Pt A), p.686-700 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Poly(vinyl alcohol) (PVA) aerogels with excellent environmentally friendly properties have been considered to replace undegradable polymer foams. However, due to highly flammable, hydrophilic, and worse compression resistance performance, PVA aerogels have always been excluded from practical. Herein, a fire safety and compression resistance PVA/expansible graphene oxide (EGO)/Layered double hydroxides (LDHs) (PGL) aerogel was prepared via the freeze-drying method and electrostatic adsorption of flame retardant. The ice crystals from aerogels were sublimated and left a mass of tree-like pore tunnel structures. Meantime, the compound of EGO and LDHs rendered PGL aerogels high compressive strength of 6.0917 MPa (at 80% of strains), a high specific modulus of 19.16 m2/s2, and an ultra-low density of 0.059 g/cm3. Especially, the as-prepared PGL aerogels showed heat release reduced by 55.4%, smoke release reduced by 54.3%, and the limiting oxygen index reaching up to 31%. Moreover, LDHs also enhanced the interface with PVA/EGO resulting in hydrophobic performance improvement. The proposed enhancements mechanism suggested that (i) chemical reactions between EGO and PVA matrix; (ii) a mass of negative potential sites from the interface of PVA/EGO composites made LDHs sheets easily adsorbing; (iii) oxygen-containing groups from EGO and LDHs absorbed mass of heat during combustion; (iv) the compact char residues on the surface of aerogels acting as barriers suppressed smoke and prevented PVA matrix from further combustion. Therefore, electrostatic adsorption as a facile production process was paved for meeting the compression resistance, flame-retardant, heat-insulating, and smoke-suppressed requirements of PVA aerogels in this work. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.07.028 |