Loading…
Smart Copolymer Surface Derived from Geminized Cationic Amphiphilic Polymers for Reversibly Switchable Bactericidal and Self-Cleaning Abilities
Bacterial adhesion and colonization on material surfaces pose a serious problem for healthcare-associated devices. Cationic amphiphilic polymer brushes are usually used as surface coatings in antibacterial materials to endow an interface with excellent bactericidal efficiency, but they are easily co...
Saved in:
Published in: | Langmuir 2023-08, Vol.39 (30), p.10521-10529 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacterial adhesion and colonization on material surfaces pose a serious problem for healthcare-associated devices. Cationic amphiphilic polymer brushes are usually used as surface coatings in antibacterial materials to endow an interface with excellent bactericidal efficiency, but they are easily contaminated, which puts a great limitation on their application. Herein, novel antibacterial copolymer brush surfaces containing geminized cationic amphiphilic polymers (pAGC8) and thermoresponsive poly(N-isopropylacrylamide) polymers (pNIPAm) have been synthesized. Surface functionalization of polymer brushes was investigated by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and water contact angle measurements. A proportion of AGC8 and NIPAm units in copolymer brushes has been adjusted to obtain a high-efficiency bactericidal surface with minimal interference to its self-cleaning property. The killing and releasing efficiency of the optimized surface simultaneously reached up to above 80% for both Staphylococcus aureus and Escherichia coli bacteria, and the bactericidal and self-cleaning abilities are still excellent even after three kill–release cycles. Such a novel copolymer brush system provides innovative guidance for the development of high-efficiency antibacterial materials in biomedical application. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c01005 |