Loading…
Improved sign-based learning algorithm derived by the composite nonlinear Jacobi process
In this paper a globally convergent first-order training algorithm is proposed that uses sign-based information of the batch error measure in the framework of the nonlinear Jacobi process. This approach allows us to equip the recently proposed Jacobi–Rprop method with the global convergence property...
Saved in:
Published in: | Journal of computational and applied mathematics 2006-07, Vol.191 (2), p.166-178 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper a globally convergent first-order training algorithm is proposed that uses sign-based information of the batch error measure in the framework of the nonlinear Jacobi process. This approach allows us to equip the recently proposed Jacobi–Rprop method with the global convergence property, i.e. convergence to a local minimizer from any initial starting point. We also propose a strategy that ensures the search direction of the globally convergent Jacobi–Rprop is a descent one. The behaviour of the algorithm is empirically investigated in eight benchmark problems. Simulation results verify that there are indeed improvements on the convergence success of the algorithm. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2005.06.034 |