Loading…

Oxygen Bridge Formed by Doping Nonmetal Atoms into Cationic Vacancies To Enhance the Photoelectrochemical Oxygen Evolution Reaction

To enhance photoelectrochemical (PEC) water splitting for renewable energy conversion, the conventional strategy is doping nonmetals into anionic vacancies. Compared to anionic vacancies, cationic vacancies are theoretically more effective and reliable for anchoring nonmetals owing to their larger r...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-08, Vol.15 (30), p.36214-36223
Main Authors: Zhang, Min, Gao, Yixuan, Zhao, Qi, Wei, Juanjuan, Zheng, Lirong, Ouyang, Jin, Na, Na
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To enhance photoelectrochemical (PEC) water splitting for renewable energy conversion, the conventional strategy is doping nonmetals into anionic vacancies. Compared to anionic vacancies, cationic vacancies are theoretically more effective and reliable for anchoring nonmetals owing to their larger radii and unique advantages. The current research mainly focuses on anionic vacancies, while there are few studies on cationic vacancies due to high formation energy and challenging characterizations by convenient techniques. To overcome the current limitations, nonmetallic S and P atoms are successfully doped into cationic vacancies on the TiO2 surface for tuning local electronic structures. In contrast to the traditional strategy of reducing the bandgaps, nonmetallic atom doping into cationic vacancies facilitates efficient electronic regulation for PEC enhancement without changing the bandgap. The enhanced performance is attributed to the formation of an oxygen bridge, which can accumulate electrons from surrounding S/P atoms. Significantly, the electron-enriched oxygen bridge efficiently transfers electrons to activate reaction site Ti, which can promote the oxygen evolution reaction performance. Density functional theory calculations reveal that the decrease of reaction energy barriers and the optimization of local electron distribution are conducive to electronic transmission. This would provide a high-efficiency electronic tuning strategy for improving PEC performance.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c06004