Loading…

Characterising the structural and cellular role of immunoglobulin C-terminal lysine in secretory pathways

Improved understanding of expression of recombinant immunoglobulin (IgG)-based therapies can decrease manufacturing process costs and bring down costs to patients. Deletion of C-terminal Lysine (C-Lys) from IgG molecules has been shown to greatly impact yield. This study set out to characterise stru...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2023-09, Vol.374, p.38-48
Main Authors: Owen, Mark D., Sacks, Charlotte, Bathina, Siva, Emmins, Robyn A., Dickson, Alan J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Improved understanding of expression of recombinant immunoglobulin (IgG)-based therapies can decrease manufacturing process costs and bring down costs to patients. Deletion of C-terminal Lysine (C-Lys) from IgG molecules has been shown to greatly impact yield. This study set out to characterise structural components of IgG C-terminal variants which modulate protein expression by examination of the consequences of mutations at the C-terminal of IgG on expression and by the use of fluorescent C-terminal fragment fusion proteins. Cell-based and cell-free experiments were also implemented to characterise how the C-terminal differentially engages with cellular pathways to modulate expression. IgG variants engineered by removal of the C-terminal Lys were expressed at significantly lower rates than control variants by CHO (and HEK) cells. Engineered constructs of mCherry fused with short regions of the C-terminal regions of IgG mimicked the ordering of expressability observed for IgG variants. These fluorescent C-terminal fragment fusions offered the potential to profile how sequences (and point mutations) modified expression. Via combinations of cell and cell-free systems, screening across a range of variants of IgG and mCherry reporter constructs has shown that interactions between specific C-terminal amino acid sequences and the ribosome can regulate the rate and extent of expression. This study highlights the importance of amino acid sequence regulatory events determining the efficiency of production of desirable recombinant proteins, showing that wildtype C-terminal lysine is a necessary capping molecule for IgG1 expression. From a wider perspective, these data are especially significant towards the design of novel entities. The approach has also provided information about novel short C-terminal tags which may be used to provide selective synthesis of specific subunits in the production of multisubunit products. Alternative strategies for removing C-terminal amino acid heterogeneity whilst maintaining efficient rates of expression have been provided. •Improved understanding of expression of recombinant immunoglobulin (IgG) based therapies and its impact on manufacturing process and costs for patients.•Characterisation of structural components of IgG C-terminal variants that modulate protein expression through examination of mutations at the C-terminal of IgG and use of fluorescent C-terminal fragment fusion proteins, providing alternative C-terminal structur
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2023.07.007