Loading…

Fibronectin sensitizes activation of contractility, YAP, and NF‐κB in nucleus pulposus cells

Intervertebral disc degeneration involves the breakdown of the discs of the spine due to genetics, aging, or faulty mechanical loading. As part of the progression of the disease, nucleus pulposus cells lose their phenotypic characteristics, inducing inflammation and extracellular matrix (ECM) altera...

Full description

Saved in:
Bibliographic Details
Published in:Journal of orthopaedic research 2024-02, Vol.42 (2), p.434-442
Main Authors: Naha, Ananya, Driscoll, Tristan P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intervertebral disc degeneration involves the breakdown of the discs of the spine due to genetics, aging, or faulty mechanical loading. As part of the progression of the disease, nucleus pulposus cells lose their phenotypic characteristics, inducing inflammation and extracellular matrix (ECM) alterations that result in a loss of disc mechanical homeostasis. Fibronectin is one ECM molecule that has been shown to be upregulated in disc degeneration and plays an important role in the progression of a wide variety of fibrotic diseases. Fragments of fibronectin have also long been associated with both osteoarthritis and disc degeneration. The goal of this work is to test the effects of fibronectin on disc cell phenotype, mechanosensing, and inflammatory signaling. We identify that fibronectin increases the activation of cellular contractility, the mechanosensitive transcription factor Yes‐associated protein, and the inflammatory transcription factor nuclear factor‐κB. This results in decreased production and expression of proteoglycans, which are required to maintain healthy disc function. Thus, fibronectin is a potential regulator of phenotypic changes in disc degeneration, and a potential target for treating disc degeneration at the cellular level. Understanding the role of fibronectin, and its potential as a therapeutic target, could provide new approaches for preventing or reversing disc degeneration.
ISSN:0736-0266
1554-527X
DOI:10.1002/jor.25670