Loading…

Investigation of the effect of different distilled water, rainwater and seawater mass ratios on coal spontaneous combustion characteristics

When water comes into contact with coal, the risk of coal spontaneous combustion should be reassessed. In order to analyze the effect of distilled water, rainwater and seawater on the coal self-heating, thermogravimetric analysis (TGA) was applied to investigate the differences between the macroscop...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2023-11, Vol.900, p.165878-165878, Article 165878
Main Authors: Liu, Hao, Li, Zenghua, Yang, Yongliang, Miao, Guodong, Li, Purui, Wang, Guoqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When water comes into contact with coal, the risk of coal spontaneous combustion should be reassessed. In order to analyze the effect of distilled water, rainwater and seawater on the coal self-heating, thermogravimetric analysis (TGA) was applied to investigate the differences between the macroscopic oxidation properties of raw coal and water-immersed coal. The risk of coal spontaneous combustion increases after water immersion, but different types of water have different degrees of influence on the spontaneous combustion of coal. The microscopic pore structure and elemental changes on the surface of coal samples before and after water immersion were studied by Scanning Electron Microscope (SEM), low-pressure nitrogen gas adsorption (LP-N2GA) and Energy Dispersive Spectroscopy (EDS) experiments. Fourier infrared spectroscopy (FTIR) was used to investigate the change of active groups. The results show that the pore structure of coal samples immersed in water is much more developed than that of raw coal. In the low-temperature oxidation stage, moisture evaporation consumes much oxidation heat and inhibits the coal self-heating. After the stage, it promotes the coal spontaneous combustion. The content of the hydroxyl group increases, and the content of carbonyl and carboxyl decreases. The alkali metal elements can act as catalysts and active carriers of oxygen, enhancing the oxidation activity of coal. The results are helpful to understand the mechanism of different distilled water, rainwater and seawater mass ratios on coal spontaneous combustion and avoid potential self-heating after immersion. [Display omitted] •The thermal behaviors of coal before and after water immersion were studied.•The change of microstructure and functional groups of coal before and after water immersion was analyzed.•The mechanism of different water on coal spontaneous combustion was discussed.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.165878