Loading…
Bottom–Up Design of Photoactive Chiral Covalent Organic Frameworks for Visible-Light-Driven Asymmetric Catalysis
The development of chiral covalentorganic framework catalysts (CCOFs) to synthesize enantiopure organic compounds is crucial and highly desirable in synthetic chemistry. Photocatalytic asymmetric reactions based on CCOFs are eco-friendly and sustainable while they are still elaborate. In this work,...
Saved in:
Published in: | Journal of the American Chemical Society 2023-08, Vol.145 (32), p.18015-18021 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of chiral covalentorganic framework catalysts (CCOFs) to synthesize enantiopure organic compounds is crucial and highly desirable in synthetic chemistry. Photocatalytic asymmetric reactions based on CCOFs are eco-friendly and sustainable while they are still elaborate. In this work, we report a general bottom–up strategy to successfully synthesize several photoactive CCOFX (X = 1–5 and 1-Boc). The photoactive porphyrin building blocks are selected as knots and various secondary-amine-based chiral catalytic centers are immobilized on the pore walls of CCOFX through a rational design of benzoimidazole linkers. The porphyrin units act as light-harvesting antennae to generate photo-induced charge carriers for the activation of bromide during the photocatalytic asymmetric alkylation of aldehydes. Meanwhile, various aldehydes are activated by the chiral secondary amine to form the target products with a high yield (up to 97%) and ee value (up to 93%). The results significantly expand the scope to predesign CCOF photocatalysts for visible-light-driven asymmetric catalysis. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.3c05732 |