Loading…

Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields

Semiconducting nanocrystals passivated with organic ligands have emerged as a powerful platform for light harvesting, light-driven chemical reactions, and sensing. Due to their complexity and size, little structural information is available from experiments, making these systems challenging to model...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2023-08, Vol.14 (32), p.7215-7222
Main Authors: Sowa, Jakub K., Roberts, Sean T., Rossky, Peter J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconducting nanocrystals passivated with organic ligands have emerged as a powerful platform for light harvesting, light-driven chemical reactions, and sensing. Due to their complexity and size, little structural information is available from experiments, making these systems challenging to model computationally. Here, we develop a machine-learned force field trained on DFT data and use it to investigate the surface chemistry of a PbS nanocrystal interfaced with acetate ligands. In doing so, we go beyond considering individual local minimum energy geometries and, importantly, circumvent a precarious issue associated with the assumption of a single assigned atomic partial charge for each element in a nanocrystal, independent of its structural position. We demonstrate that the carboxylate ligands passivate the metal-rich surfaces by adopting a very wide range of “tilted-bridge” and “bridge” geometries and investigate the corresponding ligand IR spectrum. This work illustrates the potential of machine-learned force fields to transform computational modeling of these materials.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c01618