Loading…
Mechanistically based probability modelling, life prediction and reliability assessment
Life prediction and reliability assessment are essential components for the life-cycle engineering and management (LCEM) of modern engineered systems. These systems can range from microelectronic and bio-medical devices to large machinery and structures. To be effective, the underlying approach to L...
Saved in:
Published in: | Modelling and simulation in materials science and engineering 2005-01, Vol.13 (1), p.R33-R51 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Life prediction and reliability assessment are essential components for the life-cycle engineering and management (LCEM) of modern engineered systems. These systems can range from microelectronic and bio-medical devices to large machinery and structures. To be effective, the underlying approach to LCEM must be transformed to embody mechanistically based probability modelling, vis-a-vis the more traditional experientially based statistical modelling, for predicting damage evolution and distribution. In this paper, the probability and statistical approaches are compared and differentiated. The process of model development on the basis of mechanistic understanding derived from critical experiments is illustrated through selected examples. The efficacy of this approach is illustrated through an example of the evolution and distribution of corrosion and corrosion fatigue damage in aluminium alloys in relation to aircraft that had been in long-term service. |
---|---|
ISSN: | 0965-0393 1361-651X |
DOI: | 10.1088/0965-0393/13/1/R02 |