Loading…
Enhancement of cellular uptake by increasing the number of encapsulated gold nanoparticles in polymeric micelles
[Display omitted] We apply a combination of polycaprolactone (PCL)-thiol ligand functionalization with flow-controlled microfluidic block copolymer self-assembly to produce biocompatible gold nanoparticle (GNP)-loaded micellar polymer nanoparticles (GNP-PNPs) in which GNPs are encapsulated within PC...
Saved in:
Published in: | Journal of colloid and interface science 2023-12, Vol.652, p.142-154 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
We apply a combination of polycaprolactone (PCL)-thiol ligand functionalization with flow-controlled microfluidic block copolymer self-assembly to produce biocompatible gold nanoparticle (GNP)-loaded micellar polymer nanoparticles (GNP-PNPs) in which GNPs are encapsulated within PCL cores surrounded by an external layer of poly(ethylene glycol) (PEG). By varying both the relative amount of block copolymer and the microfluidic flow rate, a series of GNP-PNPs are produced in which the mean number of GNPs per PNP in the 1, with a factor of 7 enhancement as Zave,d< 50 nm increases from 1 to ∼2. Enabled by the shear processing control provided by the microfluidic chip, these results provide the first evidence that cellular uptake can be enhanced specifically by increasing the number of GNPs per vector, with other parameters, including polymeric material, internal structure, and external surface chemistry, held constant. They also demonstrate a versatile platform for packaging GNPs in biocompatible polymeric carriers with flow-controlled formulation optimization for various therapeutic and diagnostic applications. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.08.060 |