Loading…
Multigenerational and transgenerational effects of azoxystrobin on Folsomia candida
Soil organisms are exposed to various pollutants during several generations. However standard toxicity tests are often based on exposure in only one generation. Research of multigenerational (MG) and transgenerational (TG) effects are still quite scarce, however evidence accumulates that effects obs...
Saved in:
Published in: | Environmental pollution (1987) 2023-11, Vol.336, p.122398-122398, Article 122398 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soil organisms are exposed to various pollutants during several generations. However standard toxicity tests are often based on exposure in only one generation. Research of multigenerational (MG) and transgenerational (TG) effects are still quite scarce, however evidence accumulates that effects observed in one generation can be significantly different in some of the following generations, with different effects observed. Some studies suggest adaptation to pollutants, while others report severe effects in following generations. Azoxystrobin is commonly used in the prevention and treatment of fungal diseases in a wide range of economically important crops. The main aim of this study was to assess the toxic effects of azoxystrobin (AZO) on F. candida over 3 generations through the application of biochemical and population level biomarkers. Results of reproduction tests showed a significant decrease in estimated EC50 values, with EC50 for F0 being estimated at 104.44 mga.i./kgD.W.soil and only 15.4 mga.i./kgD.W.soil for F1. In F1 a significant reduction in the number of juveniles was observed, and at AZO concentration of 50 mga.i./kgD.W and higher, F1 did not reproduce. Significant oxidative stress was observed in all generations, with increased SOD and lipid damage that slowly decreased in subsequent generations. Transgenerational effects were also observed, with a significantly reduced number of juveniles in F1 and significant oxidative stress and lipid damage in all generations. IBRv2 showed that F1 was most affected, followed by F0, and least affected was F3. When considering the whole body energy budget, F1 to F3 had significantly higher WBEB compared to F0, and a shift in proportion of energy reserves occurred in F1, where the proportion of lipids increased while protein decreased. Results of this research show that considering standard toxicity tests, risks for populations of soil organisms are possibly severely underestimated. Therefore, standard toxicity guidelines should be supplemented by multigenerational tests, when possible.
[Display omitted]
•Azoxystrobin caused oxidative stress in all generations•Estimated EC50(reproduction) significantly decreased in F1 compared to F0•Extinction event occurred in F1 at higher azoxystrobin concentrations•Azoxystrobin caused multigenerational and transgenerational effects on F. candida•Transgenerational effects observed at environmentally relevant concentrations |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2023.122398 |