Loading…
Reclassifying guesses to increase signal-to-noise ratio in psychological experiments
This paper introduces a novel procedure that can increase the signal-to-noise ratio in psychological experiments that use accuracy as a selection variable for another dependent variable. This procedure relies on the fact that some correct responses result from guesses and reclassifies them as incorr...
Saved in:
Published in: | Behavior research methods 2024-03, Vol.56 (3), p.2452-2468 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces a novel procedure that can increase the signal-to-noise ratio in psychological experiments that use accuracy as a
selection variable
for another dependent variable. This procedure relies on the fact that some correct responses result from guesses and reclassifies them as incorrect responses using a trial-by-trial reclassification evidence such as response time. It selects the optimal reclassification evidence criterion beyond which correct responses should be reclassified as incorrect responses. We show that the more difficult the task and the fewer the response alternatives, the more to be gained from this reclassification procedure. We illustrate the procedure on behavioral and ERP data from two different datasets (Caplette et al.
NeuroImage 218
, 116994,
2020
; Faghel-Soubeyrand et al.
Journal of Experimental Psychology: General 148
, 1834–1841,
2019
) using response time as reclassification evidence. In both cases, the reclassification procedure increased signal-to-noise ratio by more than 13%. Matlab and Python implementations of the reclassification procedure are openly available (
https://github.com/GroupeLaboGosselin/Reclassification
). |
---|---|
ISSN: | 1554-3528 1554-3528 |
DOI: | 10.3758/s13428-023-02158-6 |