Loading…

Physiological response mechanism of heavy metal‐resistant endophytic fungi isolated from the roots of Polygonatum kingianum

This study aims to evaluate the tolerance of endophytic fungi isolated from the fibrous roots of Polygonatum kingianum to arsenic (As) and cadmium (Cd) and their physiological response mechanisms. Five isolated strains were obtained with EC50 values for As(V) ranging from 421 to 1281 mg/L, while the...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology reports 2023-12, Vol.15 (6), p.568-581
Main Authors: Cao, Guan‐Hua, Li, Xiao‐Gang, Zhang, Chen‐Rui, Xiong, Yi‐Ran, Li, Xue, Li, Tong, He, Sen, Cui, Zheng‐Guo, Yu, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to evaluate the tolerance of endophytic fungi isolated from the fibrous roots of Polygonatum kingianum to arsenic (As) and cadmium (Cd) and their physiological response mechanisms. Five isolated strains were obtained with EC50 values for As(V) ranging from 421 to 1281 mg/L, while the other three strains tolerated Cd(II) with an EC50 range of 407–1112 mg/L. Morphological and molecular identification indicated that these eight strains were Cladosporium spp. belonging to dark septate endophytes (DSEs). The contents of metal ions in mycelium sharply increased, reaching 38.87 mg/kg for strain MZ‐11 under As(V) stress and 0.33 mg/kg for fungus PR‐2 under Cd(II). The physiological response revealed that the biomass decreased with increasing concentrations of As(V) or Cd(II), and the activity of superoxide dismutase significantly improved under the corresponding EC50‐concentration As/Cd of the strains, as well as the contents of antioxidant substances, including metallothionein, glutathione, malondialdehyde, melanin, and proline. Taken together, the filamentous fungi of Cladosporium spp. accounted for a high proportion of fungi isolated from the fibrous roots of P. kingianum and had a strong capacity to tolerate As(V) or Cd(II) stress by improving antioxidase activities and the content of antioxidant substances, and immobilization of metal ions in hyphae. Some DSEs isolated from the fibrous roots of P. kingianum had a strong capacity to tolerate As(V) or Cd(II) stress by improving antioxidase activities and the contents of antioxidant substances, and immobilization of metal ions in cell walls, thus scavenging free radical and reducing oxidative damage.
ISSN:1758-2229
1758-2229
DOI:10.1111/1758-2229.13194