Loading…

Psilocybin therapy for treatment resistant depression: prediction of clinical outcome by natural language processing

RATIONALETherapeutic administration of psychedelics has shown significant potential in historical accounts and recent clinical trials in the treatment of depression and other mood disorders. A recent randomized double-blind phase-IIb study demonstrated the safety and efficacy of COMP360, COMPASS Pat...

Full description

Saved in:
Bibliographic Details
Published in:Psychopharmacology 2023-08
Main Authors: Dougherty, Robert F., Clarke, Patrick, Atli, Merve, Kuc, Joanna, Schlosser, Danielle, Dunlop, Boadie W., Hellerstein, David J., Aaronson, Scott T., Zisook, Sidney, Young, Allan H., Carhart-Harris, Robin, Goodwin, Guy M., Ryslik, Gregory A.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RATIONALETherapeutic administration of psychedelics has shown significant potential in historical accounts and recent clinical trials in the treatment of depression and other mood disorders. A recent randomized double-blind phase-IIb study demonstrated the safety and efficacy of COMP360, COMPASS Pathways' proprietary synthetic formulation of psilocybin, in participants with treatment-resistant depression. OBJECTIVEWhile the phase-IIb results are promising, the treatment works for a portion of the population and early prediction of outcome is a key objective as it would allow early identification of those likely to require alternative treatment. METHODSTranscripts were made from audio recordings of the psychological support session between participant and therapist 1 day post COMP360 administration. A zero-shot machine learning classifier based on the BART large language model was used to compute two-dimensional sentiment (valence and arousal) for the participant and therapist from the transcript. These scores, combined with the Emotional Breakthrough Index (EBI) and treatment arm were used to predict treatment outcome as measured by MADRS scores. (Code and data are available at https://github.com/compasspathways/Sentiment2D .) RESULTS: Two multinomial logistic regression models were fit to predict responder status at week 3 and through week 12. Cross-validation of these models resulted in 85% and 88% accuracy and AUC values of 88% and 85%. CONCLUSIONSA machine learning algorithm using NLP and EBI accurately predicts long-term patient response, allowing rapid prognostication of personalized response to psilocybin treatment and insight into therapeutic model optimization. Further research is required to understand if language data from earlier stages in the therapeutic process hold similar predictive power.
ISSN:0033-3158
1432-2072
DOI:10.1007/s00213-023-06432-5