Loading…
How Can (or Why Should) Process Engineering Aid the Screening and Discovery of Solid Sorbents for CO2 Capture?
Conspectus Adsorption using solid sorbents is emerging as a serious contender to amine-based liquid absorption for postcombustion CO2 capture. In the last 20+ years, significant efforts have been invested in developing adsorption processes for CO2 capture. In particular, significant efforts have bee...
Saved in:
Published in: | Accounts of chemical research 2023-09, Vol.56 (17), p.2354-2365 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conspectus Adsorption using solid sorbents is emerging as a serious contender to amine-based liquid absorption for postcombustion CO2 capture. In the last 20+ years, significant efforts have been invested in developing adsorption processes for CO2 capture. In particular, significant efforts have been invested in developing new adsorbents for this application. These efforts have led to the generation of hundreds of thousands of (hypothetical and real) adsorbents, e.g., zeolites and metal–organic frameworks (MOFs). Identifying the right adsorbent for CO2 capture remains a challenging task. Most studies are focused on identifying adsorbents based on certain adsorption metrics. Recent studies have demonstrated that the performance of an adsorbent is intimately linked to the process in which it is deployed. Any meaningful screening should thus consider the complexity of the process. However, simulation and optimization of adsorption processes are computationally intensive, as they constitute the simultaneous propagation of heat and mass transfer fronts; the process is cyclic, and there are no straightforward design tools, thereby making large-scale process-informed screening of sorbents prohibitive. This Account discusses four papers that develop computational methods to incorporate process-based evaluation for both bottom-up (chemistry to engineering) screening problems and top-down (engineering to chemistry) inverse problems. We discuss the development of the machine-assisted adsorption process learning and emulation (MAPLE) framework, a surrogate model based on deep artificial neural networks (ANNs) that can predict process-level performance by considering both process and material inputs. The framework, which has been experimentally validated, allows for reliable, process-informed screening of large adsorbent databases. We then discuss how process engineering tools can be used beyond adsorbent screening, i.e., to estimate the practically achievable performance and cost limits of pressure vacuum swing adsorption (PVSA) processes should the ideal bespoke adsorbent be made. These studies show what conditions stand-alone PVSA processes are attractive and when they should not be considered. Finally, recent developments in physics-informed neural networks (PINNS) enable the rapid solution of complex partial differential equations, providing tools to potentially identify optimal cycle configurations. Ultimately, we provide areas where further developments are requ |
---|---|
ISSN: | 0001-4842 1520-4898 |
DOI: | 10.1021/acs.accounts.3c00335 |