Loading…
Possible disrupted biological movement processing in Developmental Coordination Disorder
There is emerging evidence that the Mirror Neuron System (MNS) might contribute to the motor learning difficulties characteristic of Developmental Coordination Disorder (DCD). This study aimed to identify whether MNS activity differed between children with and without DCD during action observation,...
Saved in:
Published in: | Cortex 2023-11, Vol.168, p.1-13 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is emerging evidence that the Mirror Neuron System (MNS) might contribute to the motor learning difficulties characteristic of Developmental Coordination Disorder (DCD). This study aimed to identify whether MNS activity differed between children with and without DCD during action observation, action execution and during a non-action baseline.
Electroencephalography (EEG) was used to measure mu rhythm (a proxy for MNS activation) in 8-12-year-old children either with (n = 20) or without (n = 19) a diagnosis of DCD. The mu rhythm was recorded at rest and during five experimental conditions: (1) observation of gross motor and (2) fine motor actions; (3) execution of gross motor and (4) fine motor actions; and (5) non-biological movement. To address whether potential co-occurring traits of other neurodevelopmental conditions were associated with differences in mu rhythm, parents reported their child's attention and social communication skills. Mixed and repeated measure ANOVAs were conducted to examine differences in mu desynchronization and mu power respectively.
The non-DCD group showed greater mu rhythm desynchronization than children with DCD (i.e., more MNS activity), with both groups demonstrating increasing desynchronization from observation of fine actions to execution of gross actions. However, we also found that the children with DCD had less mu power during the non-biological movement condition than the non-DCD children, although mu power did not differ between groups during the resting condition. Correlations between mu desynchronization and children's attention and motor skills showed that poorer attention and motor abilities were associated with reduced MNS activity.
Compared to children without DCD, the MNS in children with DCD did not distinguish between biological and non-biological movement. It is possible that the reduced specificity of the MNS in children with DCD is an underlying factor in the motor impairments observed in the disorder. The differential MNS activity could reflect broader atypical activity in perceptual networks that feed into the MNS in DCD. |
---|---|
ISSN: | 0010-9452 1973-8102 |
DOI: | 10.1016/j.cortex.2023.06.018 |