Loading…

A signal-dependent time-frequency representation: optimal kernel design

A new time-frequency distribution (TFD) that adapts to each signal and so offers a good performance for a large class of signals is introduced. The design of the signal-dependent TFD is formulated in Cohen's class as an optimization problem and results in a special linear program. Given a signa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1993-04, Vol.41 (4), p.1589-1602
Main Authors: Baraniuk, R.G., Jones, D.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new time-frequency distribution (TFD) that adapts to each signal and so offers a good performance for a large class of signals is introduced. The design of the signal-dependent TFD is formulated in Cohen's class as an optimization problem and results in a special linear program. Given a signal to be analyzed, the solution to the linear program yields the optimal kernel and, hence, the optimal time-frequency mapping for that signal. A fast algorithm has been developed for solving the linear program, allowing the computation of the signal-dependent TFD with a time complexity on the same order as a fixed-kernel distribution. Besides this computational efficiency, an attractive feature of the optimization-based approach is the ease with which the formulation can be customized to incorporate application-specific knowledge into the design process.< >
ISSN:1053-587X
1941-0476
DOI:10.1109/78.212733