Loading…
A Role for Bottom-Up Alpha Oscillations in Temporal Integration
Neural oscillations in the 8-12 Hz alpha band are thought to represent top-down inhibitory control and to influence temporal resolution: Individuals with faster peak frequencies segregate stimuli appearing closer in time. Recently, this theory has been challenged. Here, we investigate a special case...
Saved in:
Published in: | Journal of cognitive neuroscience 2024-04, Vol.36 (4), p.632-639 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural oscillations in the 8-12 Hz alpha band are thought to represent top-down inhibitory control and to influence temporal resolution: Individuals with faster peak frequencies segregate stimuli appearing closer in time. Recently, this theory has been challenged. Here, we investigate a special case in which alpha does not correlate with temporal resolution: when stimuli are presented amidst strong visual drive. Based on findings regarding alpha rhythmogenesis and wave spatial propagation, we suggest that stimulus-induced, bottom-up alpha oscillations play a role in temporal integration. We propose a theoretical model, informed by visual persistence, lateral inhibition, and network refractory periods, and simulate physiologically plausible scenarios of the interaction between bottom-up alpha and the temporal segregation. Our simulations reveal that different features of oscillations, including frequency, phase, and power, can influence temporal perception and provide a theoretically informed starting point for future empirical studies. |
---|---|
ISSN: | 0898-929X 1530-8898 |
DOI: | 10.1162/jocn_a_02056 |