Loading…
Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals
The high-order ambiguity function (HAF) is a nonlinear operator designed to detect, estimate, and classify complex signals whose phase is a polynomial function of time. The HAF algorithm, introduced by Peleg and Porat (1991), estimates the phase parameters of polynomial-phase signals measured in noi...
Saved in:
Published in: | IEEE transactions on information theory 1996-05, Vol.42 (3), p.995-1001 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high-order ambiguity function (HAF) is a nonlinear operator designed to detect, estimate, and classify complex signals whose phase is a polynomial function of time. The HAF algorithm, introduced by Peleg and Porat (1991), estimates the phase parameters of polynomial-phase signals measured in noise. The purpose of this correspondence is to analyze the asymptotic accuracy of the HAF algorithm in the case of additive white Gaussian noise. It is shown that the asymptotic variances of the estimates are close to the Cramer-Rao bound (CRB) for high SNR. However, the ratio of the asymptotic variance and the CRB has a polynomial growth in the noise variance. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.490563 |