Loading…

Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals

The high-order ambiguity function (HAF) is a nonlinear operator designed to detect, estimate, and classify complex signals whose phase is a polynomial function of time. The HAF algorithm, introduced by Peleg and Porat (1991), estimates the phase parameters of polynomial-phase signals measured in noi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 1996-05, Vol.42 (3), p.995-1001
Main Authors: Porat, B., Friedlander, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high-order ambiguity function (HAF) is a nonlinear operator designed to detect, estimate, and classify complex signals whose phase is a polynomial function of time. The HAF algorithm, introduced by Peleg and Porat (1991), estimates the phase parameters of polynomial-phase signals measured in noise. The purpose of this correspondence is to analyze the asymptotic accuracy of the HAF algorithm in the case of additive white Gaussian noise. It is shown that the asymptotic variances of the estimates are close to the Cramer-Rao bound (CRB) for high SNR. However, the ratio of the asymptotic variance and the CRB has a polynomial growth in the noise variance.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.490563