Loading…

Wear and thermal properties of Zr-based amorphous surface alloyed materials fabricated by high-energy electron beam irradiation

Zr-based amorphous surface alloyed materials were fabricated by high-energy electron beam irradiation in this study. A mixture of Zr-based amorphous powders and LiF + MgF 2 flux was deposited on a pure copper substrate, and then an electron beam was directed on this powder mixture to fabricate a one...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2005-09, Vol.400 (1), p.171-177
Main Authors: Lee, Kyuhong, Euh, Kwangjun, Lee, Sunghak, Kim, Nack J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zr-based amorphous surface alloyed materials were fabricated by high-energy electron beam irradiation in this study. A mixture of Zr-based amorphous powders and LiF + MgF 2 flux was deposited on a pure copper substrate, and then an electron beam was directed on this powder mixture to fabricate a one-layered surface alloyed material. A two-layered surface alloyed material was also fabricated by irradiating electron beam again onto the powder mixture deposited on the one-layered surface alloyed material. The microstructural analysis results indicated that a number of coarse crystalline phase particles were formed in the one-layered surface alloyed layer, whereas a small amount of fine and hard crystalline particles were homogeneously distributed in the amorphous matrix of the two-layered surface alloyed layer. Owing to these fine and hard crystalline particles, the hardness and wear resistance of the two-layered surface alloyed layer improved over the one-layered surface alloyed layer or other kinds of surface alloyed layers. The thermal conductivity of the two-layered surface alloyed layer was much lower than that of titanium-alloy-based or stainless-steel-based surface alloyed layers. These findings suggested the possibility of applying Zr-based amorphous surface alloyed materials to high wear-resistant thermal barrier coatings or parts.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2005.03.074