Loading…
Convergent nets in abelian topological groups
A net in an abelian group is called a T-net if there exists a Hausdorff group topology in which the net converges to 0. This paper describes a fundamental system for the finest group topology in which the net converges to 0. The paper uses this description to develop conditions which insure there ex...
Saved in:
Published in: | International journal of mathematics and mathematical sciences 2001-01, Vol.27 (11), p.645-651 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A net in an abelian group is called a T-net if there exists a Hausdorff group topology in which the net converges to 0. This paper describes a fundamental system for the finest group topology in which the net converges to 0. The paper uses this description to develop conditions which insure there exists a Hausdorff group topology in which a particular subgroup is dense in a group. Examples given include showing that there are Hausdorff group topologies on n in which any particular axis may be dense and Hausdorff group topologies on the torus in which S1 is dense. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/S016117120100744 |