Three-dimensional seismic analysis of submarine slopes

Three-dimensional effects in seismic analysis of submarine slopes are assessed by comparing results of two- and three-dimensional (2D & 3D) analyses, in terms of predicted displacements, shear strains, and excess pore water pressure ratios. Limits of applicability of the 2D, plane strain analysi...

Full description

Saved in:
Bibliographic Details
Published in:Soil dynamics and earthquake engineering (1984) 2006-09, Vol.26 (9), p.870-887
Main Authors: Azizian, A., Popescu, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional effects in seismic analysis of submarine slopes are assessed by comparing results of two- and three-dimensional (2D & 3D) analyses, in terms of predicted displacements, shear strains, and excess pore water pressure ratios. Limits of applicability of the 2D, plane strain analysis assumptions are quantitatively assessed. Some regression equations are also presented that express ratios of 3D vs. 2D predictions as a function of slope width/height ratio and earthquake peak acceleration. It is found that the results of 2D and 3D dynamic slope stability analysis are within a tolerance of about 15% for width/height ratios larger than 3–5, and 3D effects induced by lateral boundaries become insignificant for width/height ratios larger than 6–7. The results of the present dynamic, fully coupled, non-linear analyses are also compared with those of static slope stability analyses.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2005.10.008